CSCI5070 Advanced Topics in Social Computing

QA and Deep QA Irwin King

The Chinese University of Hong Kong

king@cse.cuhk.edu.hk

©2012 All Rights Reserved.

Outline

- Question Answering
 - Background
 - Traditional QA
 - General Overview
 - Knowledge Mining
 - Knowledge Annotation
 - An Example: Factoid Question Answering
- DeepQA
 - Architecture
 - Examples

QUESTION ANSWERING

Background

- Question Answering (QA) systems
 - Increasingly popular.
 - Why?
 - General Search Engine
 - A list of documents or Web pages.
 - Question Answering System
 - Deliver users short, succinct answers.
 - Intuitive information access.
 - Just the right information.

Examples

START's reply

===> What's the largest city in Florida?

Florida

Largest Cities in Florida: Jacksonville (672,971); Miami (358,548); Tampa (280,015); St. Petersburg (238,629); Hialeah (188,004): Orlando (164,693).

 $\textbf{Source:} \; \underline{WorldBook}$

<u>Florida</u>

Largest city: Jacksonville, Miami, Tampa, Saint Petersburg, Hialeah, Orlando, Fort Lauderdale, Tallahassee, Hollywood, Pembroke Pines

Source: 50States.com

START: Natural Language Question Answering System http://start.csail.mit.edu/

Examples

san francisco weather

Ŷ

About 16,000,000 results (0.24 seconds)

Weather for San Francisco, CA, USA

Detailed forecast: The Weather Channel - Weather Underground - AccuWeather

Weather Forecast - San Francisco, CA - Local & Long Range ... www.wunderground.com/US/CA/San_Francisco.html - Cached 7 minutes ago – Get more styles and options for your Weather Sticker® here. View WunderPhotos® in: San Francisco, California. Weather Summary. Kari Kiefer ...

Weather Current Conditions & Forecasts for the San Francisco Bay ... www.sfgate.com/weather/ - Cached

Check current conditions and forecasts for the **San Francisco** Bay Area and beyond including live radar, satellite and fog maps, rainfall charts, tide tables and air ...

Google OneBox:

http://googlesystem.blogspot.com/2006/07/google-onebox-results.html

- Two Axes of Exploration
 - Nature of the information.
 - What type of information is the system utilizing to answer natural language questions?
 - Structured Knowledge (Databases)
 - Unstructured Knowledge (Free text)
 - Nature of the technique.
 - How linguistic sophisticated are the techniques employed to answer natural language questions?
 - Linguistically Sophisticated (e.g. syntactic parsing)
 - Linguistically Uninformed (e.g. n-gram generation)

- Short history:
 - Natural language interfaces to databases.
 - Blocks world.
 - Plans and scripts.
 - Modern question answering systems.

- Natural language interfaces to databases (NLIDBs)
 - Map natural languages to SQL queries correctly.
 - Nontechnical people access information.
- Examples
 - BASEBALL baseball statistics
 - Who did the Red Sox lose to on July 5?
 - LUNAR-analysis of lunar rocks
 - What is the average concentration of aluminum in high alkali rocks?
 - LIFER-personnel statistics
 - How many professors are there in computer science department?
- Limitations
 - Domain knowledge was embedded implicitly in the parser.
 - Users were presumed to have some knowledge of underlying data tables.

- Blocks World
 - Interaction with a robotic arm in a world filled with colored blocks.

• Example

- Person: Pick up a big red block.
 - Computer: OK.
 - Person: Grasp the pyramid.
 - Computer: I don't understand which pyramid you mean.
 - Person (changing their mind): Find a block which is taller than the one you are holding and put it into the box.
 - Computer: By "it", I assume you mean the block which is taller than the one I am holding.
 - Computer: OK.
 - Person: What does the box contain?
 - Computer: The blue pyramid and the blue block.
 - Person: What is the pyramid supported by?
 - Computer: The box.
 - Person: How many blocks are not in the box?
 - Computer: Four of them.
 - Person: Is at least one of them narrower than the one which I told you to pick up?
 - Computer:Yes, the red cube.
 - etc.

- Plans and Scripts
 - QUALM
 - Application of scripts and plans for story comprehension.
 - Very restrictive domain.
 - Unix Consultant
 - Allow users to interact with UNIX.
 - e.g. "How do I delete a file?"
 - Paradigm not suitable for general purpose question answering

- Before the Web:
 - Limited audience.
 - Knowledge had to be hand-coded and specially prepared.
- START:
 - The first QA system for the World Wide Web.
 - Online and continuous operating since 1993.
 - Engages in "virtual collaboration" by utilizing knowledge freely available on the Web.
 - http://www.ai.mit.edu/projects/infolab

• START: START's reply

===> where is UC Berkeley

University of California Berkeley

Address:

110 Sproul Hall Berkeley, CA 94720-5800

Source: <u>U.S.News</u>

Go back to the START dialog window.

- Recent QA systems are based on information retrieval and information extraction:
 - Large-scale evaluations began with the TREC QA tracks.
- o TREC-8 QA Track [Voorhees and Tice 1999,2000b]
 - 200 questions: backformulations of the corpus
 - Systems could return up to five answers
 - answer = [answer string, docid]
 - Two test conditions: 50-byte or 250-byte answer strings
 - MRR scoring metric
- o TREC-9 QA Track [Voorhees and Tice 2000a]
 - 693 questions: from search engine logs
 - Systems could return up to five answers
 - answer = [answer string, docid]
 - Two test conditions: 50-byte or 250-byte answer strings
 - MRR scoring metric

- o TREC 2001 QA Track [Voorhees 2001,2002a]
 - 500 questions: from search engine logs
 - Systems could return up to five answers answer = [answer string, docid]
 - 50-byte answers only
 - Approximately a quarter of the questions were definition questions (unintentional)
- TREC 2002 QA Track [Voorhees 2002b]
 - 500 questions: from search engine logs
 - Each system could only return one answer per question answer = [exact answer string, docid]
 - All answers were sorted by decreasing confidence
 - Introduction of "exact answers" and CWS metric

Two Techniques for traditional QA

- Definition
 - Techniques that effectively employ unstructured text on the Web for QA.

• Framework

- Ways of using the Web
 - Use the Web as the primary corpus of information.
 - Project answers onto another corpus for verification purpose.
 - Combine use of the Web with other corpora.
 - Employ Web data to supplement a primary corpus.
 - Use the Web only for some questions.
 - Combine Web and non-Web answers.

- Issues about Web data redundancy
 - Surrogate for sophisticated NLP.
 - E.g.:
 - Q:Who killed Abraham Lincoln?
 - AI: John Wilkes Booth killed Abraham Lincoln.
 - A2: John Wilkes Booth altered history with a bullet. He will forever be known as a man who ended Abraham Lincoln's life.
 - Overcome poor document quality.
 - E.g.:
 - Q:What is the furthest planet in the Solar System?
 - AI: Blah Pluto blah blah Planet X blah blah
 - A2: Blah Planet X blah blah Pluto

- Finding Answers
 - Match answers using surface patterns
 - Regular expression.
 - Bypass linguistically sophisticated techniques.
 - Rely on statistics and data redundancy
 - Many occurrence of the answers.
 - Develop techniques for filtering, sorting large number of candidates.

Detailed System Architecture

- Use the Web to Perform Answer Validation
 - Compute a continuous function that takes both the question and answer as input
 - f(question,answer)=x
 - if x>threshold, then answer is valid, otherwise, answer is invalid.
- Answer validation functions
 - Pointwise Mutual Information (PMI)
 - Maximum Likelihood Ratio (MLHR)
 - Corrected Conditional Probability (CCP)

- Approach
 - Structured or semistructured resources on the Web.
 - Organize them to provide convenient methods for access.
 - Annotate these resources with metadata.
 - Connect these annotated resources with natural language to provide question answering capabilities.

- Why we need knowledge annotation
 - The Web contains many databases.
 - "Hidden" or "deep" Web.
 - Improve question-answering quality.

- Examples
 - Internet Movie Database (IMDB)
 - Content: cast, crew and other movie-related information.
 - CIA World Factbook
 - Content: geographic, political, demographic, and economic information.
 - Biography.com
 - Content: short biographies of famous people.
 - Wikipedia
 - Content: all kinds of human knowledge.

- Zipf's Law of QA
 - A few "question types" account for a large portion of all question instances.
 - Similar questions can be parameterized and grouped into ques

- Ways to access structured and semistructured Web resources
 - Wrap
 - screen scraping.
 - Provide programmatic access to Web resources. (API)
 - Retrieve results dynamically.
 - Slurp
 - "Vacuum" out information from Web resources.
 - Restructure information in a local database.

- Wrap
 - Advantages
 - Information is up-to-date.
 - Dynamic information is easy to access.
 - Disadvantages
 - Queries are limited in expressiveness.
 - Reliability issue.
 - Wrapper maintenance: sources change layout.

- Slurp
 - Advantages
 - Queries can be arbitrarily expressive.
 - Information is always available.
 - Disadvantages
 - Stale data problem. Original source is updated?
 - Dynamic data problem. Stock data?
 - Resource limitation. Too much data to store locally.

- Examples of Knowledge Annotation Systems:
 START
 - AskJeeves
 - FAQ Finder (U. Chicago)
 - Aranea (MIT)
 - KSP (IBM)
 - Early Answering (U. Waterloo)

An Example: Factoid Question Answering

- Factoid questions
 - Questions that have a short answer (typically a noun phrase or a simple verb phrase) (Agichtein, Cucerzan and Brill, 2005)
 - How tall is mount Everest?
 - How old was Leonardo da Vinci when he painted Mona Lisa?
 - Fact extraction
 - Gathering collections of reliable fact tables
 - Person-BornIn-Year
 - City-CapitalOf-Country

Fact Extraction

- Motivation
 - Web as a decentralized repository of human knowledge remains largely untapped during Web search due to the inherent difficulty of representing and extracting knowledge from noisy natural-language text
 - Access to binary relations among named entities enable new search paradigms
 - Pasca, Lin, Bigham, Lifchits and Jain, 2006

Fact Extraction

Fact Extraction

- Seed Fact
 - Pair of phrases in a "hidden" relation
 - (Vincenzo Bellini, 1801), Person-BornIn-Year
 - (Athens, Greece), City-CapitalOf-Country

- Basic Contextual Extraction Pattern
 - Each occurrence of the two sides of the fact within the same sentence produces a basic contextual extraction pattern
 - (Prefix, Infix, Postfix)
 - Prefix and postfix are contiguous sequences of a fixed number of terms, the immediate left of the first matched phrase, the immediate right of the second matched phrase
 - Infix contains all terms between two matched phrases

- Basic Contextual Extraction Pattern
 - Fact: (Athens, Greece)
 - Prefix: [...take students to], Infix: [, the capital of],
 Postfix: [and home to...]
 - Algorithm
 - Modified trie, both phrases of the seed facts are loaded into the trie, each sentence is then matched onto the trie
 - Parallelized, using MapReduce (Dean and Ghemawat, 2004)

- Generalized Contextual Pattern Extraction
 - Terms in prefix, infix and postfix in each basic pattern are replaced with their corresponding classes of distributed similar words
 - Extraction the set of distributionally similar words (Lin 1998)
 - The set of generalized patterns is smaller than the set of basic patterns, but with higher coverage

Prefix	Infix	Postfix
[1	T!
CL3 00th :	's Birthday (). EndOfSent
StartOfSent	CL4 CL8 CL22 CL26 born	in CL17 ,
Memorial CL47 in	(b. CL3 0 ,	, d. CL3
among CL6	CL4 born on 00 CL3	in CL10 ,
CL8 child :	CL4 born 00 CL3	in Lewisburg,
CL4 written by	who CL4 born CL3 00,	, in Oak

CL3 = {March, October, April, Mar, Aug., February, Jul, Nov., ...}

CL4 = {is, was, has, does, could}

CL6 = {You, Lawmakers, Everyone, Nobody, Participants, ...}

 $CL8 = \{a, the, an, each, such, another, this, three, four, its, most, ...\}$

CL10 = {Pennsylvania, Denver, Oxford, Marquette, Hartford, ... }

CL17 = {Tipperary, Rennes, Piacenza, Osasuna, Dublin, Crewe, ... }

CL22 = {Brazilian, Chinese, Japanese, Italian, Pakistani, Latin, ...}

CL26 = {entrepreneur, illustrator, artist, writer, sculptor, chef, ...}

CL47 = {Tribute, Homage}

....

Examples of generalized patterns acquired during the extraction of Person-BornIn-Year facts. A digit is represented by a 0.

- Validation and Ranking
 - Candidate facts, similarity scores that aggregate individual word-to-word similarity scores of the component words relative to the seed facts
 - A linear combination of features
 - PMI-inspired score, (Turney 2001)
 - Completeness score, demote candidate facts if any of their two sides are likely to be incomplete
 - E.g. Mary Lou vs. Mary Lou Retton, John F. vs. John F. Kennedy

- Scalable
 - Person-BornIn-Year
 - 10 seed facts
 - Expands the initial seed set of 10 facts to 100,000 facts (after iteration 1) and then to one million facts (after iteration 2)

DEEP QA

The Jeopardy! Challenge

DeepQA

- A massively parallel probabilistic evidence-based architecture
- Four principles
 - Massive parallelism
 - Many experts
 - Pervasive confidence estimation
 - Integrate shallow and deep knowledge
- Watson
 - The implementation of DeepQA by a research team in IBM
 - Beat human on the quiz show Jeopardy in 2011

Content Acquisition

- Identify and gather the content to use for the answer and evidence sources
- Sources
 - Encyclopedias, Dictionaries, Thesauri, Newswire articles, etc.
- Corpus expansion
 - Identify seed documents and retrieve related documents from the web
 - Extract self-contained text nuggets
 - Score the nuggets based on their informativeness to the seed documents
 - Merge the most informative nuggets into the corpus

Question Analysis

- Question classification
 - Identify puns, constraints, definition components, entire subclues within questions
 - Question type: puzzle, math, definition, etc.
- Lexical Answer Type (LAT) detection
 - LAT: a word or noun phrase that specifies the type of the answer without any attempt to understand its semantics.
 - E.g., the LAT of the clue "Invented in the 1500s to speed up the game, this maneuver involves two pieces of the same color" is "maneuver".

Question Analysis (cont.)

- Focus detection
 - The focus is the part of the question that, if replaced by the answer, makes the question a stand-alone statement
 - The focus of "When hit by electrons, a phosphor gives off electromagnetic energy in this form" is "this form"
- Relation detection
 - syntactic subject-verb-object predicates or semantic relationships between entities
 - "They're the two states you could be reentering if you're crossing Florida's northern border"
 - Relation: borders(Florida,?x,north)

Decomposition

- Help to determine the answer and improve the overall answer confidence
 - Whether questions should be decomposed
 - how best to break them up to sub-questions
 - Rule-based deep parsing
 - statistical classification methods

Hypotheses Generation

- Each candidate answer plugged back into the question is considered a hypothesis
 - Primary Search
 - Find as much potentially answer-bearing content as possible
 - Operative goal: about 85% percent binary recall for top 250 candidates
 - Techniques used: text search engines (Indri and Lucene), document search, passage search, knowledge base search using SPARQL on triple stores, generation of multiple search queries for a single question, etc.

- Candidate Answer Generation

- Document search results from "title-oriented" resources: title is extracted as a candidate answer
- Passage search results: detailed analysis of the passage text
- Several hundred candidate answers are generated
- Favor recall over precision

Soft Filtering

- Conduct lightweight scoring algorithms to prune the initial candidates down to smaller set of candidates
 - Less resource intensive scoring models (learning algorithms)
 - For example, the likelihood of a candidate answer being an instance of the LAT

Hypothesis and Evidence Scoring

- Evidence Retrieval
 - Gather additional supporting evidence for each candidate answer
 - E.g., passage search with the candidate answer added to the primary search query
- Scoring
 - Determine the degree of certainty that retrieved evidence supports the candidate answers
 - Various scorers
 - the degree of match between a passage's predicate-argument structure and the question (Smith &Watrman, 1981)
 - deep semantic relationships (Lenat, 1995)
 - passage source reliability
 - geospatial location
 - temporal relationships
 - popularity
 - ...

Example

Clue: Chile shares its longest land border with this country.

Answer Merging

- Multiple candidate answers may be equivalent despite very different surface forms
 - Abraham Lincoln and Honest Abe
- Custom merging per feature to combine scores
- Algorithms
 - matching
 - normalization
 - co-reference resolution

Ranking and Confidence Estimation

- A ranking model is trained over a set of training questions with known answers
 - Multiple trained models are used to handle different question classes
- Confidence estimation
 - Confidence-weighted learning techniques (Dredze et al., 2008)

Speed and Scaleout

- Apache UIMA
 - A framework implementation of the Unstructured Information Management Architecture (Ferrucci & Lally , 2004)
 - Support interoperability and scaleout of text and multi-modal analysis applications
 - All of the components in DeepQA are implemented as UIMA annotators

One Jeopardy! question can take **2 hours on a single 2.6Ghz Core** Optimized & Scaled out on 2880-Core IBM workload optimized POWER7 HPC using UIMA-AS, *Watson* answers in 2-6 seconds.

Performance

Performance (cont.)

Accuracy on Jeopardy! and TREC

More Resources

- Links
 - DeepQA homepage
 - Watson homepage
 - About Watson on Jeopardy.com
- Videos
 - Building Watson A Brief Overview of the DeepQA Project
 - IBM "Watson" System to Challenge Humans at Jeopardy!

References

- Eugene Agichtein, Silviu Cucerzan, and Eric Brill. 2005. Analysis of factoid questions for effective relation extraction. In Proc. of SIGIR, 2005.
- Marius Pasca, Dekang Lin, Jeffrey Bigham, Andrei Lifchits, and Alpa Jain. Organizing and Searching the World Wide Web of Facts Step One: the One-Million Fact Extraction Challenge, In Proc. of AAAI, 2006.
- David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya A. Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John Prager, Nico Schlaefer, and ChrisWelty. BuildingWatson: An overview of the DeepQA project. Al Magazine, 31(3):59–79, 2010.
- D Ferrucci, E Nyberg, J Allan, K Barker, E Brown, J Chu-Carroll, A Ciccolo, P Duboue, J Fan, D Gondek, E Hovy, B Katz, A Lally, M McCord, P Morarescu, JW Murdock, B Porter, J Prager, T Strzalkowski, C Welty, W Zadrozny. Towards the Open Advancement of Question Answering Systems. IBM Research Report. RC24789 (W0904-093), 2009.

